ECON 4930 Spring 2011 Electricity Economics Lecture 13

Lecturer:

Finn R. Førsund

The key theme: drivers of price changes

- Point of departure: water as a natural resource in limited supply
 - All prices equal, Hotelling's rule (Chapter 2)
- But: The price of electricity varies over both day and season
- We must come up with explanations
- NB! price variation in the market may not be optimal

Constraints as price drivers (Chapter 3)

- Reservoir constraint
 - Threat of overflow
 - Running empty
- Production constraint
 - Pipes, turbines, generator, transmission
- Environmental constraints
 - Ramping up and down
 - Minimum production (max covered above)

The basic model (Chapters 1,3)

The social optimisation problem

$$\max \sum_{t=1}^{T} \int_{z=0}^{e_t^H} p_t(z) dz$$

subject to

$$R_t \le R_{t-1} + w_t - e_t^H$$

$$R_t \leq \overline{R}$$

$$R_{t}, e_{t}^{H} \geq 0, t = 1,...,T$$

$$T, w_t, R_o, R$$
 given, R_T free

The Lagrangian

$$L = \sum_{t=1}^{T} \int_{z=0}^{e_t^H} p_t(z) dz$$

$$-\sum_{t=1}^{T} \lambda_t (R_t - R_{t-1} - w_t + e_t^H)$$

$$-\sum_{t=1}^{T} \gamma_t (R_t - \bar{R})$$

The first-order conditions

$$\frac{\partial L}{\partial e_t^H} = p_t(e_t^H) - \lambda_t \le 0 \ (= 0 \text{ for } e_t^H > 0)$$

$$\frac{\partial L}{\partial R_t} = -\lambda_t + \lambda_{t+1} - \gamma_t \le 0 \ (= 0 \text{ for } R_t > 0)$$

$$\lambda_t \ge 0 \ (= 0 \text{ for } R_t < R_{t-1} + w_t - e_t^H)$$

$$\gamma_t \ge 0 \ (= 0 \text{ for } R_t < \overline{R})$$

Threat of overflow and empty reservoir

In between empty and full

Production constraint

Production constraint

$$e_t^H \leq \overline{e}^H$$

New first-order condition

$$\frac{\partial L}{\partial e_t^H} = p_t(e_t^H) - \lambda_t - \rho_t \le 0 \ (= 0 \text{ for } e_t^H > 0)$$

$$\rho_t \ge 0 (= 0 \text{ for } e_t^H < \overline{e}^H), \quad t = 1,...,T$$

Production constraint: constraint in period 2: peak demand

Production constraint: constraint in period 1: may have overflow

Unregulated generation

- Run-of-the-river
 - Full reservoirs turn a power station into a run-ofthe-river station
- Windmills
 - Range of fluctuation in production large
- Solar
 - Nights, overcast

New relations of unregulated generation

Energy balance

$$x_t = e_t^H + e_t^I$$

First-order conditions

$$\frac{\partial L}{\partial e_t^H} = p_t(e_t^H + e_t^I) - \lambda_t \le 0 \ (= 0 \text{ for } e_t^H > 0)$$

Must take: Run-of-the-river and wind power

Summing up 14

Multiple producers (Chapter 4)

- Introduce model with N producers
 - Social optimisation problem

$$\max \sum_{t=1}^{T} \int_{z=0}^{x_t} p_t(z) dz$$

subject to

$$x_t = \sum_{j=1}^{N} e_{jt}^H$$

$$R_{jt} \le R_{j,t-1} + w_{jt} - e_{jt}^H$$

$$R_{jt} \leq \overline{R}_{j}$$

$$R_{it}, x_t, e_{it}^H \ge 0$$

$$T, w_{jt}, R_{jo}, \overline{R}_{j}$$
 given, R_{jT} free, $j = 1,..., N$, $t = 1,..., T$

Hveding's conjecture (Chapter 4)

- Assume independent hydropower plants with one limited reservoir each, and perfect manoeuvrability of reservoirs, but plantspecific inflows
- The plants can be regarded as a single aggregate plant and the reservoirs can be regarded as a single aggregate reservoir when finding the social optimal solution for operating the hydropower system.
 - If overflow, then all reservoirs overflow at the same time, if empty then all reservoirs are emptied at the same time

Price fluctuation when hydro interacts with thermal (Chapter 5)

- Thermal sector is used according to merit order ranking of marginal cost; sectoral cost function
- General rule: price equals water value equals marginal cost of thermal
- Typical result: price variations less than in a pure hydro system

New relations with thermal

- Cost function included in the objective function: $c(e_t^{Th})$
- Energy balance: $x_t = e_t^H + e_t^{Th}$
- First-order condition

$$\frac{\partial L}{\partial e_t^H} = p_t(e_t^H + e_t^{Th}) - \lambda \le 0 \ (= 0 \text{ for } e_t^H > 0)$$

$$\frac{\partial L}{\partial e_t^{Th}} = p_t(e_t^H + e_t^{Th}) - c'(e_t^{Th}) - \theta_t \le 0 \ (= 0 \text{ for } e_t^{Th} > 0)$$

$$\theta_t \ge 0 \ (= 0 \text{ for } e_t^{Th} < \overline{e}^{Th})$$

Bathtub diagram with thermal and hydro with reservoir constraint

Summing up 19

The impact of trade on prices (Chapter 6)

- Unlimited trade
 - External exogenous prices determine the regional prices
- Limited trade due to transmission
 - Region may have different prices if trade is limited
 - If import-constrained higher regional price
 - If export-constrained lower regional price
- Endogenous trade prices
 - Equal prices without constraints on interconnectors
 - Different prices with constraints on interconnectors

Impact of trade on prices

Summing up 21

The impact of transmission on prices (Chapter 7)

- Transmission: connecting all generator nodes and consumption nodes by lines
- Fundamental physics: loss of energy on lines (Ohm's law)
 - Implication: nodal prices as the optimal price structure; higher consumer price the higher the loss
 - Implications for use of hydro over seasons
- Limited capacity of lines and congestion
 - Thermal capacity (Ohm's law)
 - More general resistance; impedance when AC
 - Loop flows and other electric mysteries with AC

Transmission relations two nodes

Energy balance and loss

$$x_t + e_t^L = x_t + e_t^L(x_t) = e_t^H, t = 1, 2$$

New first-order conditions

$$\frac{\partial L}{\partial x_t} = p_t(x_t) - \tau_t - \tau_t \frac{\partial e_t^L}{\partial x_t} - \mu_t \le 0 \ (= 0 \text{ for } x_t > 0)$$

$$\frac{\partial L}{\partial e_t^H} = -\lambda_t + \tau_t \le 0 \ (= 0 \text{ for } e_t^H > 0)$$

$$\mu_t \ge 0 \ (= 0 \text{ for } x_t < \overline{x}), \ t = 1, 2$$

$$\mu_{t} \ge 0 (= 0 \text{ for } x_{t} < \overline{x}), t = 1, 2$$

• Nodal price: $p_t(x_t) - \lambda_t = \lambda_t \frac{\partial e_t^L}{\partial x_t} + \mu_t$, t = 1, 2

Bathtub with loss and congestion

Summing up 24

Uncertainty as price driver (Chapter 9)

- Assuming all information for the present period to be known, price for the next period will be expected price
 - The construction and use of expected water value table, role of constraints
- When time progresses there will be a continuous update of expected prices
- Realised price will typically differ from expected price, implying fluctuating price independent of binding constraints

Uncertainty model, two periods

Social optimisation problem

$$\max_{e_1^H} \left[\int_{z=0}^{e_1^H} p_1(z) dz + E \left\{ \int_{z=0}^{R_o + w_1 + w_2 - e_1^H} p_2(z) dz \right\} \right]$$

subject to

$$e_1^H \in \left[\max(0, R_o + w_1 - \overline{R}), R_o + w_1 \right]$$

$$R_1 \in \left[0, \overline{R} \right]$$

- First-order conditions
 - Interior solution

$$p_{1}(e_{1}^{H}) - E\left\{p_{2}(R_{o} + w_{1} + w_{2} - e_{1}^{H})\right\} = 0 \Longrightarrow$$

$$p_{1}(e_{1}^{H}) = E\left\{p_{2}(R_{o} + w_{1} + w_{2} - e_{1}^{H})\right\} = E\left\{p_{2}(R_{1} + w_{2})\right\}$$

- Expected price table: $E\{p_2(R_1 + w_2)\}$

Illustration of uncertainty for period 2 making decision in period 1

Summing up 28

Market power as price driver: Monopoly (Chapter 8)

- Shifting of water from relatively inelastic periods to more elastic periods
 - Price will then go down in periods where more is produced and up in periods with less production
 - Possibility of spill
 - Possibility of no unique solution
 - Social price solution if reservoir constraint is binding

The monopoly model

First-order conditions

$$\frac{\partial L}{\partial e_t^H} = p_t'(e_t^H)e_t^H + p_t(e_t^H) - \lambda_t \le 0 \ (=0 \text{ for } e_t^H > 0) \Rightarrow$$

$$p_t'(e_t^H)e_t^H + p_t(e_t^H) - \lambda_t = p_t(e_t^H)(1 + \check{\eta}_t) - \lambda_t = 0$$

Bathtub illustration of two periods

The competitive solution (Chapter 10)

 Second welfare theorem: any efficient allocation can be sustained by a competitive equilibrium

Problems:

- Electric externalities due to transmissions with loop flows, reactive power, etc.
- Hydraulic externalities for plants along the same river system
- Uncertainty and expectation formation

Investments (Chapter 10)

- Deregulation of electricity sector
 - Unbundling generation and transmission
- Investment in generation and investment in transmission made by independent organisations, but investments need coordination both over time and over space
- Use of shadow prices on capacities as marginal investment signals
 - Lumpy investment indivisibilities